Argonne Training Program on

EXTREME-SCALE COMPUTING July 28 - August 8, 2013

NATIONAL SARORATORY

Adaptive Linear Solvers and Eigensolvers

Jack Dongarra

University of Tennessee
Oak Ridge National Laboratory
University of Manchester

8/9/13 1

6
< Dense Linear Algebra

« Common Operations

Ax=b; minllAx—>bll; Ax= Ax

* A major source of large dense linear systems is problems
involving the solution of boundary integral equations.

= The price one pays for replacing three dimensions with two
is that what started as a sparse problem in O(n®) variables
is replaced by a dense problem in O(n?).

« Dense systems of linear equations are found in numerous
other applications, including:
= airplane wing design;
» radar cross-section studies;
= flow around ships and other off-shore constructions:
= diffusion of solid bodies in a liquid;
= noise reduction; and
= diffusion of light through small particles.

e

A\

“" Existing Math Software - Dense LA

DIRECT SOLVERS License Support Type Language Mode

Real | Complex | F77 C C++ |Shared | GPU Dist
Eigen Mozilla yes X X X X
Elemental BSD yes X X X M
FLAME LGPL yes X X X X X
FLENS BSD yes X X X X
LAPACK BSD yes X X X X X
LAPACK95 BSD yes X X F95 X
MAGMA BSD yes X X X X X C/O/X
NAPACK BSD yes X X X
PLAPACK ? no X X X X M
PLASMA BSD yes X X X X X
PRISM ? no X X X M
rejtrix by-nc-sa yes X X X
Sca. APACK BSD yes X X X X M/P
Trilinos/Pliris BSD yes X X X X M
ViennaCL MIT yes X X X C/O/X

http://www.netlib.org/utk/people/JackDongarra/la-sw.html

» LINPACK, EISPACK, LAPACK, ScaLAPACK
= PLASMA, MAGMA

c

ICL

“June 2013: The TOP10

Rank Site Computer Country Cores [ﬁ ﬁ::;] fe:}: /;:4“;,; L/Ayf://:;;:
National University Tianhe-2 NUDT,

1 of Defense Xeon 12C 2.26Hz + IntelXeon 3,120, 33.9 70 17.8 || 1905
Technology [+ 2=
DOE / 0s Titan, Cray XK7 (16€) + Nvidia | .

2 | Oak Ridge Nat Lab Kepler GPU (14c) + Custom [LB o & b | |

DOE / NNSA Sequoia, BlueGene/Q (16c¢)
3 L Livermore Nat Lab + custom 1,572, 86J 16.3 81 7.9 ||2063
RIKEN Advanced Inst K computer Fujitsu SPARC64

4 for Comp Sci VIIIfx (8c) + Custom 705,024 105 | 93\ 12.7 || 827
DOE / Os Mira, BlueGene/Q (16¢c)

5 Argonne Nat Lab + Custom 786,432 | 8.16 81 3.95 || 2066

6 Texas Advanced |Stampede, Dell Intel (8c) + Inte/np e 33 || 06

Computing Center Xeon Phi (61c) + IB = ’ : :
Forschungszentrum JUQUEEN, BlueGene/Q, ”
7 | Juelich (FZT) | Power BQC 16C 1.66Hz+Custom 8 458.752| 501 | 85| 2.30 ||2178
DOE / NNSA Vulcan, BlueGene/Q,
8 L Livermore Nat Lab| Power BQC 16C 1.6GHz+Custom B EE 85 1.97 | 2177
Leibniz
9 Rechenzentrum SuperMUC, Intel (8c) + IB 147 456 2.90 90* || 3.42 || 848
Tianhe-1A, NUDT
10 |Nat. Supercomputer [Intel (6c) + Nvidia Fermi GPU 186,368 | 2.57 @ 55 || 4.04 || 636
J (14c) + Custom
500 US Navy DSRC Cray XT5 .096 79

¢ Potential System Architecture
~ with a cap of $200M and 20MW

Systems 2013 Difference
Tianhe -2 Today & 2022

System peak 55 Pflop/s 1 Eflop/s ~20x
[Power 18 MW ~20 MW 0o(1)
(3 Gflops/W) (50 Gflops/W) ~15x
System memory 1.4 PB 32 -64PB ~50x
(1.024 PB CPU + .384 PB CoP)
Node performance 3.43 TF/s 1.2 or 15TF/s 0o(1)
(.4 CPU +3 CoP)
Node concurrency 24 cores CPU + O(1k) or 10k ~Bx - ~50x
171 cores CoP
Node Interconnect BW 6.36 GB/s 200-4006B/s ~40x
System size (nodes) 16,000 O(100,000) or O(1IM) ~6x - ~60x
Total concurrency 312 M O(billion) ~100x

12.48M threads (4/core)

MTTF ?? unknown O(<1 day) 0(?)

ICLOr"

Factors that Necessitate Redesign

Steepness of the ascent from terascale to
petascale to exascale

Extreme parallelism and hybrid design
* Preparing for million/billion way parallelism

Tightening memory/bandwidth bottleneck
 Limits on power/clock speed implication on multicore

« Reducing communication will become much more intense

* Memory per core changes, byte-to-flop ratio will change

Necessary Fault Tolerance
* MTTF will drop
 Checkpoint/restart has limitations

ICL

Key Challenges at Exascale

Levels of parallelism
» O(100M and beyond)

Hybrid architectures

> Node composed of multiple
multicore sockets +
accelerators

Bandwidth vs Arithmetic rate

> Most approaches assume flops
expensive

Storage Capacity

> Issue of weak scalability in
future systems

Fault occurrence; shared
responsibility
> Process failure recovery

Power Management

» API for fine grain management
Language constraints

» Fortran, C & MPI, Open-MP
Autotuning

> Systems complex and changing
Bulk Sync Processing

> Break fork join parallelism
Lack of reproducibility:

unnecessarily expensive (most
of the time)

> Can't guarantee bitwise
results

Need for effective scheduling
of tasks

IcLOr-

Critical Issues at Peta & Exascale for
Algorithm and Software Design

« Synchronization-reducing algorithms
= Break Fork-Join model
« Communication-reducing algorithms
= Use methods which have lower bound on communication
= Cache aware
* Mixed precision methods
= 2x speed of ops and 2x speed for data movement
« Autotuning

= Today's machines are too complicated, build “"smarts” into
software to adapt to the hardware

* Fault resilient algorithms
» Implement algorithms that can recover from failures/bit flips
* Reproducibility of results

= Today we can't guarantee this. We understand the issues, but
some of our “"colleagues” have a hard time with this.

C

IcLor-

Gflops

Level 1, 2 and 3 BLAS
I core Intel Xeon E5-2670 (Sandy Bridge); 2.6 GHz; Peak = 20.8 Gflop/s

20
18
16 =0="Level 3 BLAS: DGEMM"

14
12

=="Level 2 BLAS: DGEMV"

——ie

12 Level 1 BLAS: DAXPY
6 _
4 —
2 - 0.2 Gflop/s
3. 2 —
0 1000 2000 3000 4000 5000
Matrix size

1 core Intel Xeon E5-2670 (Sandy Bridge), 2.6 GHz.

24 MB shared L3 cache, and each core has a private 256 KB L2 and 64 KB L1.
The theoretical peak per core DP is 8 flop/cycle * 2.6 GHz = 20.8 Gflop/s per core.
Compiled with gcc 4.4.6 and using MKL_composer_xe_2013.3.163

[
A %

< Commodity plus Accelerator Today

Commodity Accelerator/Co-Processor
Intel Xeon Phi
Intel Sandy Bridge 244 “cores” (4 used by OS)
8 cores 61 (60) FPU =61 (60) cores
2.6 GHz 1.091 GHz
8*2.6"8 ops/cycle 60*1.092*8*2 aops/cycle

164 Gflop/s (DP) < 1.31 Tflop/s (DP) or 3.62 Tflop/s (SP)>

m

Core l Core ‘ Core ' Core J
L27J L2J LZJ LZJ
I I._‘_’_I. I w
o |_+ R R R
Gooeicl -+ - W - TSR
Fr Rl e
| | | |
¢l Zl ¢l A
| Fay Fay Fay
nterconnect 2109 l 8100 ‘ 2109 ‘ 810) J
PCI-X 16 lane F 10

64 Gb/s (8 GB/s
1 GWI/s

{\
A\ %
ICL ’

Dense Linear Algebra

" Numerical Linear Algebra Algorithms and
Software

» EISPACK, LINPACK, BLAS, LAPACK, ScalLAPACK,
PBLAS, ATLAS

»PLASMA: Manycore: DPLASMA: Distributed)
» MAGMA (Accelerators; Intel, Nvidia, AMD,..)

» QUARK
> Runtime for PLASMA

> PaRSEC
> Runtime for DPLASMA

The Standard LU Factorization LINPACK
1970’s HPC of the Day: Vector Architecture

Factor column Divide by Schur Next Step
with Level 1 Pivot complement
BLAS row update

(Rank 1 update)

Main points
» Factorization column (zero) mostly sequential due to memory bottleneck
« Level 1 BLAS
» Divide pivot row has little parallelism
« Rank -1 Schur complement update is the only easy parallelize task
» Partial pivoting complicates things even further
* Bulk synchronous parallelism (fork-join)
* Load imbalance
» Non-trivial Amdahl fraction in the panel
» Potential workaround (look-ahead) has complicated implementation

The Standard LU Factorization LAPACK
1980’°s HPC of the Day: Cache Based SMP

% %
OO OO
e 000000 ® 000000000

atatatatatatatotadoatatatata atatatatatatatatatatototat

seessveeveese Sesesaeeieveese

OO0 ottt tatatatodototatatated

atatatatsl

atatatatsl
Factor panel Triangular Schur Next Step
with Level 1,2 update complement
BLAS update

Main points
« Panel factorization mostly sequential due to memory bottleneck
« Triangular solve has little parallelism
« Schur complement update is the only easy parallelize task
« Partial pivoting complicates things even further
» Bulk synchronous parallelism (fork-join)
» Load imbalance
* Non-trivial Amdahl fraction in the panel
« Potential workaround (look-ahead) has complicated implementation

A New Generation of DLA Software

Software/Algorithms follow hardware evolution in time

LINPACK (70’s) Rely on
(Vector operations) - Level-1 BLAS operations
LAPACK (80’s) Rely on
(Blocking, cache friendly) - Level-3 BLAS operations

ScalLAPACK (90’s)
(Distributed Memory)

Rely on
- PBLAS Mess Passing

2D Block Cyclic Layout

_.,
=

I Matrix point of view l | Processor point of vie:

o)2)[<]o

1135

S B3/ E3(0Y e (Y (Y

Doaoaoanan

[N)

wlw | w|w [SEESRENRENEEN] g

===~ ~]=]~]]

S B/ E3(0Y e e (Y

R e o|o|o|o|o

afala|a o|lo|o|o|o

alalala o|lo|o|o|o

W W ww NN NN

oo oo LR

oo oo INIFNAFN NS FN
oo oo INIFNIFNY NS FN

wlw|w|w [NEESRENREN]

Slloajisjfo|dffo|ld o

1
0
1
0
1
0
1
0

ofl=|lofl-|lof-|e
[o[feo J[ro Jfeo][~
EN) FERIFNY RO RIFNY PO RIFN

Blocked LU and QR algorithms (LAPACK)

LAPACK block LU (right-looking): dgetrf

LAPACK block QR (right-looking): dgeqrf

Panel

dgetf2

ﬁ‘— Iu(I)

I

dgeqf2 + dlarft

ﬁ‘— qr(l)

Update of the

dtrsm (+ dswp)

remaining submatrix factorization

e QY —
dgemm dlarfb
I] .‘-

15

Parallelization of LU and QR.

Parallelize the update: dgemm
* Easy and done in any reasonable software.]
* This is the 2/3n3 term in the FLOPs count. - - 'I

* Can be done efficiently with LAPACK+multithreaded BLAS

\Y W/
dgetf2
I‘— Iu(I) l
PZRNN
dtrsm (+ dswp)
— - l l l l l Fork - Join parallelism
=8 ' ‘ ‘ ‘ ‘ Bulk Sync Processing

dgemm

O-m1=
N7

@)
<« Synchronization (in LAPACK LU)

AN

AN

Step2 —— s> Step3 —— > Step4 - .-

A i.\r\;::

[] '

A
\d
®
LHEHL

Allowing for delayed update, out of order, asynchronous, dataflow execution ‘!

PLASMA LU Factorization

Dataflow Driven

T B B T R xGEMM

XGETF2

N
<~ Data Layout is Critical

Y

Y

Y Y

* Tile data layout where each data tile
is contiguous in memory

- Decomposed into several fine-grained
tasks, which better fit the memory of
the small core caches

PLASMA LU: Tile Algorithm and
Nested Parallelism

Operates on one, two, or three matrix tiles at a time using a
single core

— This is called a kernel; executed independently of other kernels

— Mostly Level 3 BLAS are used

Data flows between kernels as prescribed by the programmer
Coordination is done transparently via runtime scheduler
(QUARK)

— Parallelism level adjusted at runtime

— Look-ahead adjusted at runtime

Uses single-threaded BLAS with all the optimization benefits

Panel is done on multiple cores
— Recursive formulation of LU for better BLAS use
— Level 1 BLAS are faster because they work on combined cache size

{\
<-QUARK

Shared Memory Superscalar Scheduling

FOR k =0..TILES-1 Ty
ALKIK] < DPOTRF(AIKIIK]) definition — pseudocode

FOR m = k+1..TILES-1
A[m][K] < DTRSM(A[k][k] A[m][K])
FOR m =k+1..TILE
A[m][m] < DSYRK(A[m][k] A[m][m])
FOR n = k+1..m-1
A[m][n] <~ DGEMM(A[m][K], A[n][k], A[m][n])

4

*Objectives
= High utilization of each core
= Scaling to large number of cores
= Synchronization reducing algorithms

*Methodology
= Dynamic DAG scheduling (QUARK)
= Explicit parallelism
= |mplicit communication
= Fine granularity / block data layout

-Arbitrary DAG with dynamic scheduling

c-;j =3 E—%—)’@Vﬂ‘&]

~ Parallel Linear Algebra s/w for
Multicore/Hybrid Architectures

/
= / G-E»——D ‘ dj <:§:J & (—) C5 i) D B
—» *’/C-Ef-@ (.:.; <:g;—35 e % & = ?ﬂ

t

g:> QL)(‘;’;Q,Q*“ dy& L\

|\ Qo =

L\ <_> \Cgt_> &

\ Cé ‘\\ Qt‘—) ‘_g&mg &

f‘j ‘E—') -v\‘t‘) \¢ U “ I
‘

&wt& | ‘

‘ j &

\@) -'i- '
‘. > =
& “—J@-) ‘ i

&—3

=
&
—
"BE "Emmc .
2 "F = E l'_ Fork-JO|.n
] E = [——
8 - - el parallelism

parallelism

Cores

Time

DAG scheduled

22

b PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

 DAGs get very big, very
fast

e So windows of active
tasks are used; this

means no global critical
path

o Matrix of NBxNB tiles;
NB3 operation

« NB=100 gives 1 million
tasks

7
L4

I/

b PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

 DAGs get very big, very
fast

e So windows of active
tasks are used; this

means no global critical
path

o Matrix of NBxNB tiles;
NB3 operation

« NB=100 gives 1 million
tasks

[

b PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

 DAGs get very big, very
fast

e So windows of active
tasks are used; this

means no global critical
path

o Matrix of NBxNB tiles;
NB3 operation

« NB=100 gives 1 million
¢
tasks

b PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

 DAGs get very big, very
fast

e So windows of active
tasks are used; this

means no global critical
path

o Matrix of NBxNB tiles;
NB3 operation

« NB=100 gives 1 million
o tasks

N

< Example: QR Factorization

FOR k = 0 .. SIZE - 1
Alk]Lk], TLk][k] <- GEQRT(A[k][k])
FOR m = k+1 .. SIZE - 1

Alk]1L[k]|Up, A[mI[k], T[m][k] <-
TSORT(ATk][kI[Up, A[m][k], T[m][k])

FOR n = k+1 .. SIZE - 1
ALk][n] <- (ATk][k]|Low, T[kI[k], A[kl[n])
FOR m = k+1 .. SIZE - 1

Alkl[n], A[m][n] <-
TSMOR(A[m][k], TImI[kI, Alk]l[n], A[m][n])

GEQRT

TSQRT

UNMQR

TSMQR

“Input Format - Quark (PLASMA)

for (k =0; k < A.mt; k++) {
Insert_Task(zgeqrt, A[k][k], INOUT,
T[k][k], OUTPUT);
for (m = k+1; m < A.mt; m++) { °
Insert_Task(ztsqrt, A[k][k], INOUT | REGION_D|REGION_U,
A[m][k], INOUT | LOCALITY,
T[m][k], OUTPUT);

}
for (n = k+1; n < A.nt; n++) {
Insert_Task(zunmqr, A[k][k], INPUT | REGION_L,
T[k][k], INPUT,
A[k][m], INOUT);
for (m = k+1; m < A.mt; m++) { .
Insert_Task(ztsmqr, A[k][n], INOUT,
A[m][n], INOUT | LOCALITY,
A[m][k], INPUT,
T[m][k], INPUT);

Sequential C code

Annotated through
QUARK specific syntax

Insert_Task
INOUT, OUTPUT, INPUT

REGION_L, REGION_U,
REGION D, ...

LOCALITY

Executes thru the QUARK RT to
run on multicore SMPs

e

.cf Algorithms [PLASMA [scdz]potrf[Tile][Async]() }
Cholesky

e Algorithm
e equivalent to LAPACK

e Numerics
e same as LAPACK

e Performance

e comparable to vendor on few cores

e much better than vendor on many cores

N
o Algorithms [PLASMA _[scdz]getrf]_Tile][Async]() }
LU

e Algorithm
e equivalent to LAPACK

e same pivot vector

e same L and U factors

e same forward substitution procedure

e Numerics
e same as LAPACK

e Performance

e comparable to vendor on few cores

e much better than vendor on many cores

e}
|cT Algorithms [PLASMA [scdz]geqrt[Tile][Async]() }

incremental QR Factorization

e Algorithm
e the same R factor as LAPACK (absolute values)

‘..... o different set of Householder reflectors
e different Q matrix

o different Q generation / application procedure

G
G
.----- e Numerics

e same as LAPACK

e Performance

e comparable to vendor on few cores

e much better than vendor on many cores

{\
lct Al g (o) ri t h ms [PLASMA [scdz]syev[Tile][Async]() }

three-stage symmetric EVP

e Algorithm
e two-stage tridiagonal reduction + QR Algorithm

o fast eigenvalues, slower eigenvectors
(possibility to calculate a subset)

e Numerics
e same as LAPACK

e Performance

e comparable to MKL for very small problems

e absolutely superior for larger problems

N

|ct Al g (o) rith ms [PLASMA [scdz]gesvd[Tile][Async]() }
three-stage SVD

e Algorithm
e two-stage bidiagonal reduction + QR iteration

e fast singular values, slower singular vectors
(possibility of calculating a subset)

e Numerics
e same as LAPACK

e Performance

e comparable with MKL for very small problems

e absolutely superior for larger problems

£ Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

L e B

I-} e |
A

BAEATS Rt oo
i I mm e .'.'.'.h... 1 1 |?I“

A i

| u |] oo

<. $t2' R
o

'hLI L o o D O

i @

TRTRI

,

LAUUM

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

POTRF+TRTRI+LAUUM: 25 (71-3)
Cholesky Factorization alone: 3t-2

Pipelined: 18 (3t+6)

e}
|cT Algorithms [PLASMA [scdz]geqrt[Tile][Async]())
-

incremental QR -

PLASMA_HOUSEHOLDER_MODE,
PLASMA_TREE_HOUSEHOLDER);

kPLASMA Set

e Algorithm
e the same R factor as LAPACK (absolute values)

o different set of Householder reflectors
e different Q matrix

o different Q generation / application procedure

e Numerics
e same as LAPACK

e Performance

e absolutely superior for tall matrices

processes

Communication Avoiding QR

1

R(RgY)

(B

0O - ;
QR(I) —> (RN) —’[QR(e | —> (N ’] _-)[Q

Quad-socket, quad-core machine Intel Xeon
EMT64 E7340 at 2.39 GHz.

Theoretical peak is 153.2 Gflop/s with 16

cores.
Matrix size 51200 by 3200

R
QT LN PNCUE BN

A= Q1Q2Q3R =QR

Theoretical Peak

DGEMM Peak

——T SP-CAQR

. / |
~—0 : !
) = | — Em(=°')—"(R" '}I
160
.L / 140
CR() —> (R, ’\ / 120
100
3
o 80
[Y 2

_/«‘bﬂmm

60

‘T ScaLAPACK

[LAPACK |

4 6 8 10 12
Number of Column Tiles (Width)

14 16

N

A

“” Random Butterfly Pivoting (RBP)

 Tosolve Ax=b:
= Compute A, = UTAV, with U and V random matrices

» Factorize A, without pivoting (GENP)
= Solve A,y = UT b and then Solve x =Vy
U and V are Recursive Butterfly Matrices

= Randomization is cheap (O(n) operations)
= GENP is fast (“Cholesky” speed, take advantage of

the GPU)
= Accuracy is in practice similar to GEPP (with iterative
refi nement) but A butterfly matrix is defined as any n-by-n matrix of the form:
, [X X]
1 /R S
Think of this as a preconditioner step. B= V2 (R -S)
Goal: Transform A into a matrix that would be sufficiently where A and S are random diagonal matrices.
‘random” so that, with a probability close to 1, pivoting is
AN

not needed. B= <\)

v PLASMA RBT execution trace

IcLOr"

| | |
0O O e A e R 3
L T A O] T P e R
B I T 2 T A T T Ae
L e TR G AV R E T/ ST
| AR YN FARRI TR ECTER A AT A R DT R T

O 7 e 2 T e i o
L T T R T G T
DA B T] T Ay A
LB T e e eI v
e e e T T

| LA |

- with n=2000, nb=250 on 12-core AMD Opteron -

Partial randomization (i.e. gray) is inexpensive.
Factorization without pivoting is scalable without synchronizations.

“Randomize Instead of Pivoting

A is symmetric indefinite. Given the
factorization A = LDL", where L is unit lower
triangular and D is diagonal

Solve Ax = b by solving successively

Lz=b, Dy=2z, L'x=y

Not stable

= To ensure stability usually pivoting is
used such as
PAPT= LDL", where P is a permutation
matrix

= Pivoting complicated and expensive

Avoid pivoting using Random Butterfly
Transformations (RBT)

Apply iterative refinement to solution

= If non-convergence call LU on symmetric matrix

Performance similar to Cholesky

«Compute

A, = UTAU

«Factorize
A, without
pivoting

A y=U"b
x=U

1 (R \\\
V2R =S ; NN\
2 . N\

R and S are random diagonal matrices
Matrix Cond A NP PP SRBT (IR)
condex 102 10-15 1075 1015 (0)
fiedler 10° - 10°15 1013 (0)
orthog 10° 107! 10714 10716 (1)
randcorr 10° 10716 100 10716 (0)
augment 10* 10-15 10715 1016 (1)
prolate 10'8 10713 100 10713 (0)
toeppd 107 s =0 10716 (0)
ris 100 - 10715 10~1 (10)
li —jl 10° 10~15 10715 10~14(0)
max (i, j) 108 10714 1071 10714 (0)
Hadamard 10° 10° 10° 10713 (0)
rand0 105 1012 1014 10-15 (1)
randl 10° - = 10715 (1)
rand?2 10° - 10714 107155 (1)
rand3 104 10-13 10—14 1015 (1)

6
< Methodology overview

A methodology to use all available resources:
* MAGMA MIC uses hybridization methodology based on

= Representing linear algebra qlgorlthms as collections Hybrid CPU+MIC algorithms
of tasks and data dependencies among them (small tasks for multicores and
° [l ° l k f
= Properly scheduling tasks' execution over Arge tasks for MICs)

multicore CPUs and manycore coprocessors
MIC

* Successfully applied to fundamental '\\
linear algebra algorithms o
= One- and two-sided factorizations and solvers |
= |terative linear and eigensolvers |
MIC GPU

.« . O

* Productivity o
1) High level;
2) Leveraging prior developments;
3) Exceeding in performance homogeneous solutions

e
< Hybrid Algorithms

One-Sided Factorizations (LU, QR, and Cholesky)
* Hybridization

= Panels (Level 2 BLAS) are factored on CPU
using LAPACK

* Trailing matrix updates (Level 3 BLAS) are
done on the Accelerator using “look-
ahead”

next panel i+1

L
<« From Single to MultiMIC Support

- Data distribution
= 1-D block-cyclic distribution
« Algorithm
= MIC holding current panel is sending

it to CPU
= All updates are done in parallel on MIC EMICT MIC MIC
0o L1 2 o0

the MICs

= Look-ahead is done with MIC holding
the next panel

¢ MAGMA MIC Scalability

ICL

LU Factorization Performance in DP

2600
2400
2200
2000

1800

Q1600

5

> 1400
[8)

& 1200

8 1000

800

600

man

Per

400
200

0

5000

MAGMA DGETRF Performance(Multiple Card)

10000

15000

=>&=1 MIC

20000 25000
Matrix Size NX N

30000

35000

40000

Host
Sandy Bridge (2 x 8 @2.6 GHz)
DP Peak 332 GFlop/s

Coprocessor
Intel Xeon Phi (60 @ 1.09 GHz)
DP Peak 1046 GFlop/s

System DP Peak 1378 GFlop/s
MPSS 2.1.4346-16
compiler_xe_2013.1.117

43

¢ MAGMA MIC Scalability

Intel Xeon Phi (60 @ 1.09 GHz)

LU Factorization Performance in DP
MAGMA DGETRF Performance(Multiple Card)
~0-2 MIC =1 MIC
2600
2400
2200
2000
1800
Q1600
G
g 1400
S 1200
£
.g 1000 Host
Sy » Sandy Bridge (2 x 8 @2.6 GHz)
800 DP Peak 332 GFlop/s
600
Coprocessor
400
200 DP Peak 1046 GFlop/s
0 System DP Peak 1378 GFlop/s
0 5000 10000 15000 20000 25000 30000 35000 40000 MPSS 2.1.4346-16
compiler_xe 2013.1.117
Matrix Size N X N

44

¢ MAGMA MIC Scalability

Intel Xeon Phi (60 @ 1.09 GHz)

LU Factorization Performance in DP
MAGMA DGETRF Performance(Multiple Card)
3MIC “@=2MIC =1 MIC
2600
2400
2200
2000
£1soo e
Q1600 el
G
g 1400
S 1200
£
g 1000 Host
iy . Sandy Bridge (2 x 8 @2.6 GHz)
800 DP Peak 332 GFlop/s
600
Coprocessor
400
200 DP Peak 1046 GFlop/s
0 System DP Peak 1378 GFlop/s
0 5000 10000 15000 20000 25000 30000 35000 MPSS 2.1.4346-16
compiler_xe 2013.1.117
Matrix Size NX N

45

¢ MAGMA MIC Scalability

Intel Xeon Phi (60 @ 1.09 GHz)

LU Factorization Performance in DP
MAGMA DGETRF Performance(Multiple Card)
=l=4 MIC 3MIC =@=2 MIC =1 MIC
2600
2400
2200
2000
£1800
S 1600
G
g 1400
5 1200
£
£ 1000 Host
S Sandy Bridge (2 x 8 @2.6 GHz)
800 DP Peak 332 GFlop/s
600
Coprocessor
400
200 DP Peak 1046 GFlop/s
0 System DP Peak 1378 GFlop/s
0 5000 10000 15000 20000 25000 30000 35000 40000 MPSS. ZoUAERE 1
compiler_xe_2013.1.117
Matrix Size N XN

46

£L

<-QUARK on Accelerators

prototype implementation of the LU factorization using 48 cores and 4 GPUs

:

I...IIII
S

J. Kurzak, P. Luszczek, M. Faverge, J. Dongarra

Programming the LU Factorization for a Multicore System with Accelerators

] 1
[CIELT
il

1 L
LT TTTT

CICETEIT]
IEELL
[|

L1
LTI
CICLT

[] |
[CIEEE E

I
ICLLT
ILTT]

High Performance Computing for Computational Science — VECPAR 2012

4 CPU cores solely committed to controlling the 4 GPUs, and not shown in the trac

1]
[N/ N [}

] [[
[
[m
[[L
CICCEN CIECECT)

]]
I
,;, ,H‘L o) o
I O

T

SRR EE s
Ty

L]

IEICIED
HEN

[]

|

CICIEEIEIE
"I |

(]

/]] [1

J0) I
| SIS SN
—

[0

DMASs

ICL

“Mixed Precision Methods

* Mixed precision, use the lowest
precision required to achieve a given
accuracy outcome

= [mproves runtime, reduce power
consumption, lower data movement

= Reformulate to find correction to
solution, rather than solution; Ax rather
than x.

S (xi)

S (xi)

48 : - i]: ;(();ii))

Xi+1 = Xj —

N

< |dea Goes Something Like This...

o Exploit 32 bit floating point as much as
possible.

= Especially for the bulk of the computation

e Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

e Intuitively:
= Compute a 32 bit result,

= Calculate a correction to 32 bit result using
selected higher precision and,

= Perform the update of the 32 bit results with the
correction using high precision.

49

N
~ Mixed-Precision lterative Refinement

 Iterative refinement for dense systems, Ax = b, can work this

way.
L U = lu(A) o(n’)
x = L\(U\b) o(n?
r=>b- Ax o(n?)
WHILE || r || not small enough
z = L\(U\r) o(n?)
X=X+2Z o(n’)
r=b- Ax o(n?)
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

~ Mixed-Precision lterative Refinement

Iterative refinement for dense systems, Ax = b, can work this

way.
L U = lu(A) SINGLE o(n’)
x = L\(U\b) SINGLE o(n?
r=b- Ax DOUBLE o(n?)
WHILE || r || not small enough
z = L\(U\r) SINGLE o(n?)
X=X+2Z DOUBLE o(n’)
r=b- Ax DOUBLE o(n?)
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

= |t can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision

O(n?) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108)

~. Mixed precision iterative refinement

Solving general dense linear systems using mixed precision iterative refinement

1600

1400 =4SP Solve

1200
-
1000 DP Solve

800

GFlop/s

600

400

GPU K20c (13 MP @0.7 GHz, peak 1165 GFlop/s)
CPU Genuine Intel (2x8 @2.60GHz, peak 333 GFlop/s)

200

0

D A O A QO O O N M O
X O N9 O O O O O O
F S S & F S

Matrix size

~. Mixed precision iterative refinement

Solving general dense linear systems using mixed precision iterative refinement

1600
=*=SP Solve
1400
<#-DP Solve (MP
1200 lter.Ref.)
1000 -#-DP Solve
2]
3
O 800
L
O 600
400
GPU K20c (13 MP @0.7 GHz, peak 1165 GFlop/s)
CPU Genuine Intel (2x8 @2.60GHz, peak 333 GFlop/s)
200
0
© A o QO Q Q Q QO
D N O Q S O Q" & O
TS S F S

Matrix size

e

< Eigenproblem Solvers in MAGMA

Quantum mechanics (Schrodinger equation)
= Quantum chemistry |
» Principal component analysis (in data mining) o) X XX
= Vibration analysis (of mechanical structures)
= Image processing, compression, face recognit
= Eigenvalues of graph, e.g., in Google’s page r

¢ Ax=AX Y

* Need to solve it fast

Current MAGMA results:

MAGMA with 1 GPU can be 12x faster vs vendor libraries on state-
of-art multicore systems

T. Dong, J. Dongarra, S. Tomoy, |. Yamazaki, T. Schulthess, and R. Solca, Symmetric dense matrix-vector multiplication on multiple GPUs
and its application to symmetric dense and sparse eigenvalue problems, ICL Technical report, 03/2012.

J. Dongarra, A. Haidar, T. Schulthess, R. Solca, and S. Tomov, A novel hybrid CPU- GPU generalized eigensolver for electronic structure
calculations based on fine grained memory aware tasks, ICL Technical report, 03/2012.

.
< Total Cost of Algorithm

s For each step it’s the cost of the panel + cost of update:

* Each panel is of size nb, and each column of the panel requires:
* 2 GEMV with the trailing matrix,
* 6 GEMV with the previous column of the panel,
* 6 GEMV with the previous row of the panel,
. and

* Thus the cost of a panel is:
* nb*(2*2*m*n) + 6*m*nb? + 6¥n*nb? +

* The update A := A - V*Y’ = X*U’ consists into:
* 2 GEMM of the computed panel to update
the trailing matrix and so its cost is
= 2*(m-nb)*(n-nb)*nb + 2*(m-nb)*(n-nb)*nb
= 4*(m-nb)*(n-nb)*nb

trailing
matrix

LARFG Generates an elementary reflector (Householder matrix).

e
“ DAG for Conventional Reduction

7 - ——= XN

EM CGENMD CGEMMD CGEMMD

S 3 N N Fork/Join
CGEMMY CGEMMD> CGEMMD CGEMMD

Level 2 BLAS

(ﬂi@lﬂb(ﬂi@lﬂb
CGEMM> CGEMMD

trailing
matrix

LABRD: Reduces the first nb rows and columns of a general matrix to a bidiagonal form.

“ Performance of Level 2 and Level 3 BLAS

%2 - 8 cores Intel Xeon E5-2670 (Sandy Bridge), 2.6 GHz.
24 MB shared L3 cache, and each core has a private 256 KB L2 and 64 KB L1.
Theoretical peak for this architecture in double precision is 20.8 Gflop/s per core (333 Gflops total).
8 flop/cycle*2.6 cycle/sec*16 cores = 332.8 Gflop/s
Compiled with gcc 4.4.6 and using MKL_composer_xe_2013.3.163

300

250
. | 200
g ~@-Level 3 BLAS GEMM
o ~¢=Level 2 BLAS GEMV

100

. e |

0 = I I I I I I I I I 1

1K 2K 4K 6K 8K 10K 12K 14K 16K 18K 20K

Matrix size

£ The standard Tridiagonal reduction xXSYTRD

IcLOr"

i reduction to tridiag '/ divide and conquer klapply Q

100%--- .- ~..-.~

90%
80%
70% -
60% -
50% -
40% -
30% -
20% -
10% -

0% - T l l l T l l T u T u T T

4K
5K
6K
7K
8K
9K
10K
12K
14K
16K
18K
20K
22K
24K

C The PLASMA reduction: 2 stage algorithm

IcLOr-

The idea is to cast expensive memory
operations, occurring during the panel
factorization into fast computationally intensive
ones.

Redesign the algorithm in a way which
increase the cache reuse. Call it communication
reducing.

Design new cache friendly kernels to overcomes
the memory bound limitation.

Extract parallelism and schedule task in an
asynchronous order.

€. The PLASMA reduction: 2 stage algorithm

Lomu

Second stage
Bulge chasing

20
—”
40

First stage

nz = 3600

 Stage 1:
* BLAS-3,
* asynchronous execution,

* Stage2:
* BLAS-1.5,
* asynchronous execution,
* new cache friendly kernel (reduced communication).

A

“~ The PLASMA Reduction: 1st Stage

e I - B B

0 , T or step = 1; & to NT-1

:] Q from LEFT
QR factorisation on tile A(1,0) A(7,0)

0

10

2

3

4

5

6

7 i

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 01234567 1'?'endfor

Apply Q from LEFT on tile A(4,1)T A(5,4) Apply Q from LEFT and RIGHT on tiles A(1,1) A(5,1) A(5,5) Apply Q from RIGHT on tile A(7,1) A(7,5)

c

The PLASMA Reduction: 1st Stage

Reduction from Dense to Band stage -1-

)

0 (o0
Y

ssee

(XXX
1 sose

ssee
ssee

I3
o000
ssese
ssese

I3
o000
ssese
ssese

Yxxll
ooo

[XXX
...

...

|
|
|
‘A A LS ‘
|
|
|
|

see
e0 e
L2 2
see

- g
. ﬁﬁﬁ%ﬁ

...
e
.

L2 2
L2 2
...
L a4

@
ﬁ&ﬁm

Y
see
soe
soe
ooo

L
®

-] N (4]] = (%) N
Y
see

L2 2 2
A A ld
L 2 2 2/
(2 2 2/

&
i
i
HHEH

o

€ The PLASMA reduction: 2 stage algorithm

ICL

* A. Haidar, P. Luszczek, J. Kurzak and J. Dongarra.
An Improved Parallel Singular Value Algorithm and Its Implementation for Multicore Hardware.

International Conference for High Performance Computing, Networking, Storage and Analysis,
IEEE-SC 2013.

* A. Haidar, R. Solca, M. Gates, S. Tomov, T. Schulthess and J. Dongarra.
Leading edge multi-GPU algorithms for generalized eigenproblems for electronic structure calculations.

International Supercomputing Conference IEEE-ISC 2013.

* A. Haidar, H. Ltaief, P. Luszczek and J. Dongarra.
A Comprehensive Study of Task Coalescing for Selecting Parallelism Granularity in a Two-Stage
Bidiagonal Reduction A Comprehensive Study of Task Coalescing for Selecting Parallelism Granularity in a
Two-Stage Bidiagonal Reduction. IEEE IPDPS 2012

* A. Haidar, H. Ltaief and J. Dongarra.
Parallel Memory-Aware Fine-Grained Reduction to Condensed Forms for Symmetric Eigenvalue Problems.
International Conference for High Performance Computing, Networking, Storage and Analysis,
IEEE-SC 2011.

& The PLASMA reduction: stage 1

First stage

)

0 20 40 60 0 10 20 30 40 50 60
nz = 3600 nz = 605

* The algorithm proceeds as a collection of interdependent
tasks that operate on the tile data layout.

* These tasks are organized into a directed acyclic graph
(DAG) that is executed in an asynchronous manner.

N

A

ICLOr"

DAG of Stage 1 of 2 Stage Approach

» Exposes more
parallelism

* Asynchronous ops
* Rich in GEMM

000

65

The PLASMA Reduction: 2"d Stage

nz = 605

nz=119

New cache friendly kernels to overcomes the memory.

Extract pipelined parallelism and schedule task in order to
Increase cache reuse.

& The PLASMA reduction: stage 2

ICLOr"

5

ol |

.

0
25

& The PLASMA reduction: stage 2

£ The PLASMA reduction: stage 2

IcLor-

* since the green block of data is small (nbxnb) and to increase cache reuse all of these
operations are unrolled within one kernel

& The PLASMA reduction: stage 2

ICLOr"

10 i
RPN a bulge is created
15 I M

20 S

0 5 10 15 20 25

£ The PLASMA reduction: stage 2

IcLor-

0 5 10 15 20 25

* the red block of data is small (nbxnb), also these operations are unrolled within one kernel

& The PLASMA reduction: stage 2

0 5 10 15 20 25

£ The PLASMA reduction: stage 2

IcLor-

* to increase cache reuse all of these operations are unrolled within one kernel

& The PLASMA reduction: stage 2

ICLOr"

0 5

* and so on.... this succession eliminate a sweep

’he PLASMA reduction: 2 stage algorithm DGESDD

ICL

—A— 2-stages / MKL (DGEBRD)
5.5 | —8— 2-stages / MKL (DGESDD NO Vectors)| DR R]

—eo— 2-stages / MKL (DGESDD 20% Vectors)
h 2-stages / MKL (DGESDD ALL Vectors),— . —=—a |

4.5

Speedup

N
a1
T

0-5 | | | | | | | | | | | | |
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k

Matrix size

system: 2x8 core Intel Xeon E5-2670 (Sandy Bridge) @ 2.6 GHz

’he PLASMA reduction: 2 stage algorithm DGESDD

ICL

10

—a&— 2—stages / MKL (DGEBRD)
g|| —&— 2-stages / MKL (DGESDD NO Vectors)

—o— 2-stages / MKL (DGESDD 20% Vectors)
2-stages / MKL (DGESDD ALL Vectors)

Speedup

| | | | | | | | |
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k
Matrix size

system: 4x12 AMD opteron 6180 SE @ 2.5 GHz

€ Blocking Matters.
What Tile Size?

220 I I I I I I I I I I

200- —E— Reduction to tridiagonal (TRD-two-stages) @
1‘1 —+— Dense to Band (stage-1)

180 | —9—Band to Tridiag (stage-2) | /
160 |

-

=

o
T

G

© DN

o O
T T

Time(sec)

60 100 140180 240 300 360 400 500 600
Tile size

£ The 2-stage Tridiagonal reduction xSYTRD

IcLOr"

[B

i reduction to band ' bulge chasing «I divide and conquer
“ apply Q2 U apply Q1
100%
90% -
80%
70% |
60%
50% -
40% - -
ol o
2 MR M
sl = HHRHHH
0% - e B so%

5K
6K
7K
8K
9K

4K
10K
12K
14K
16K

20%
10% -
0% -

e ennn
g EeRennnnn
il EEEEEEEEEEN
Rl EEEEENEEENEN
EEEEEEEENER
EEEEEEEENER
EEEEEENEEEER

Number of tasks in DAG:
O(n3)
Cholesky: 1/3 n3

LU: 2/3 n3
QR: 4/3 n3

DPLASMA
(Distributed System)

\ ?\ I? é inputs

| H ﬁ tasks
/. .\

é ‘ & outputs

PaRSEC

b

Number of tasks in parameterized DAG:
O(1)

Cholesky: 4 (POTRF, SYRK, GEMM, TRSM)

LU: 4 (GETRF, GESSM, TSTRF, SSSSM)

QR: 4 (GEQRT, LARFB, TSQRT, SSRFB)

DAG: Conceptualized & Parameterized

http://web.eecs.utk.edu/~kurzak/tutorials/

DPLASMA / PaRSEC

Distributed memory PLASMA
/
Parallel Runtime Scheduling
and Execution Control

TOC

e Software Stack
e Functionality

e Design Principles

e Performance

DPLASMA

Distributed memory PLASMA

PLASMA

gortms. || =P DPLASMA

(geqrf, potrf, getrf, gesy, ...)

PLASMA MAGMA PaRSEC

Tile Kernels GPU Kernels Parallel Runtime Scheduling and Execution Control

BLAS CUDA hwloc pthread MPI

A. Bouteiller et al.

Flexible Development of Dense Linear Algebra Algorithms on Massively
Parallel Architectures with DPLASMA

Parallel and Distributed Processing Workshops and Phd Forum - IPDPSW 2011

DPLASMA

Functionality

FUNCTIONALITY COVERAGE

Linear Systems of Equations Cholesky, LU (inc. pivoting, PP), LDL (prototype)
Least Squares QR & LQ
Symmetric Eigenvalue Problem Reduction to Band (prototype)

Level 3 Tile BLAS GEMM, TRSM, TRMM, HEMM/SYMM,
HERK/SYRK, HER2K/SYR2K

Covering four precisions:
double real, double complex, single
real, single complex (D, Z, S, C)

Providing ScaLAPACK-compatible
interface for matrices in F77
column-major layout

Supporting:
Linux, Windows, Mac 0S X, UN*X
(depends on MPI, hwloc)

PaRSEC

Parallel Runtime Scheduling ane Execution Control

¢ Serial definition as the starting poing

FOR k = 0 .. SIZE-1
A[k][k], T[k][k] <- DGEQRT(A[k][k])
FOR m = k+1 .. SIZE-1

Alk][k], A[m][k], T[m][k] <-
DTSORT(A[k][k], A[m][k], T[m][k])

FOR n = k+1 .. SIZE-1
A[k][n] <- DORMOR(A[k][k], T[k][k], A[k][n])
FOR m = k+1 .. SIZE-1

A[k][n], A[m][n] <-
DSSMOR(A[m][k], T[m][k], A[k][n], A[m][n])

PaRSEC

Parallel Runtime Scheduling ane Execution Control

¢ Translation to PTG through symbolic analysis

///”'____-_*_“—*—~—ﬁ>

k = SIZE-1 k20
FOR k!= 0 .. SIZE-1

Alk][k]} |T(k][k]| <- DGEQRT|(A[k][k])

m k+1 .. SIZE-1
UPPER

-

|

FO,

Alk][k]} A[mAk], T[m][k] <
(DTSQRT(A[K] (K1} A(mITk]\ T(m](K])

FOR\n = k4T ~._ SIZE-1
LOWER b
A[k][n] <- DORMOR(A[k][k]} |T(k]l[k]} A[k][n])
FOR m = k+1 .. SIZE-1
n = k+1
A[k][n], [A[m][n][<- m = k+1

DSSMOR(A[m] [k], T[m][k], A[k][n], A[m][n])

PaRSEC

Parallel Runtime Scheduling ane Execution Control

FOR k=0 TO N-1
D G EQ RT(inoutAkk)
FOR n=k+1to N

DORMQR(Kk, /noutAkn
FOR m=k+1to N

DTSQRT /noutA‘!kk /noutAmk
FOR n=k+1to N

DTSMQR(m mK, /noutAkn /noutAmn

serial

PTG >

a.k.a Job Dependency Format (JDF)

DGEQRT,,,
Tare — Awi | DTSMQR,
Tare = DORMQR Kk, Nk(il)
1AR = DTSQRTkH’k’k(B)

1

ARG = Ak,k(n)

DORMQR, ,
1rG < DGEQRTkkk(EI)
«n | DTSMQR, |
= DTSMQRkH,n,k
= Ak,n

9]

2AR’G
2ARG
2AR’G
DTSQRT,,,

ke < DGEQRT, ., (% | DTSQRT,,, , ()
c= DTSQRTm+1kk(|!) | Ay ()

<ALl DTSMQRmkk 4

= DTSMQRm k+1..N,k '

= Am,k

1,
1
2ARG
24rG
24rG

DTSMQR,,,
\re — DTSQRT
— DORMQR.., | DTSMQR
= DTSMQRm+1nk |A, .

, | DTSMQR
o= DGEQRTmnk+1 'BORMQR
2 ptsarT, ' DTSMaR

= Am,n

1

2R
2R
3
3R

®

m-1,n,k

G)

ARG
m,n, k+1 |

m,n,k+1 m,n,k+1 |

DPLASMA / PaRSEC

performance

Solving Linear Least Square Problem (DGEQRF)
60-node, 480-core, 2.27GHz Intel Xeon Nehalem, IB 20G System

THEORETICAL PEAK OF 4358.4 GFLOP/S

4000
DPLASMA
3000 —O
@
0
- ScaLAPACK
w2000
)
1000
0

0 10000 20000 30000 40000 50000 60000 70000

N
(M=67,200)

DPLASMA / PaRSEC

performance

Solving Hermitian Positive-Definite System (SPOTRF)
12-node, 96-core, 2.27GHz Intel Xeon Nehalem, IB 20G System
w/ 12-Tesla C2070 GPU

WEAK SCALING

10
PRACTICAL PEAK
(SGEMM PERFORMANCE)
o DPLASMA
(Q (WITH GPU)
S 6
-
(.
=
4
ScaLAPACK
2 (WITHOUT GPU)
—0
—0—
0
1 2 a 8 12
54k 76k 108k 152k 176k

NUMBER OF NODES
MATRIX SIZE (NxN)

Distributed Memory Runtime System

* Parallel Runtime Scheduler & Execution Control
— Executes a dataflow representation of a program

— Scheduler provides
* Automatic load-balance between cores
* Harness the power of accelerators (GPU, Mic, etc)

— Works on large scale distributed memory machines
* Communications are implicit, overlapped
* user defined Communication pattern and data-distribution

Prominent feature: Parameterized Task Graph

N

\
ICL

- Runtime DAG scheduling

« Every node has the symbolic
DAG representation

e Only the (node local) frontier of
the DAG is considered

o Distributed Scheduling based on
remote completion notifications

e Background remote data
transfer automatic with overlap

« NUMA / Cache aware Scheduling

« Work Stealing and sharing based on
memory hierarchies

c

< Related Work

A" v + 0 ml Q
) 4 o+ —
) = Q M= ; c o 9
7 a m > = =
m A p) 3 =) o o
'a)) c 3 m P
. Distr. Repl Repl Distr. w/ Repl
Scheduling (1/core) (1/node) (1/node) (Actors) SuperMatrix (1/node) e e
Internal Seq.
Language oI EEG) U /i S\(:/(/]. DArAif/ge-n el S\(;C/]. S\?VC/I. Internal
of]:/vﬁ /n: deoc;g:k addl:tas add_task Objects = BBk add_task add_task
Accelerator GPU GPU GPU GPU GPU
T Not Not
Availability Public Public Public Public Public Public Avail. Avail.
Early stage: ParalleX All projects support Distributed and Shared Memory

Non-academic: Swarm, MadLINQ, CnC (QUARK with QUARKd; FLAME with Elemental)

)
< Task Affinity in PaRSEC

GEQRTH
UNMOR [
TSQRT[]
TSMQR[]

User defined data| 1
distribution functio

\
S
.
.

--------------- node 4 ------------
core 0
core 1
; core 2
§-~DDII -
i Ready Task P
. Queue(s) cPUo :
GPU 1| |
Within each node

Task Scheduling
on H/W resources is
decided dynamically

Task Affinity to nodes
(based on Data Distribution) .
TASKS 00— —3—

ENEEEN oo [|zoo

EE > EEE

a0 o000

_zx_S_

Example Data Distribution: 00 oog

2D Block Cyclic (3x2) oo ninln
0/3f0[3]0]3
411(4{1]4
215025215
0/3(0[3]0]3
1{4|1(4[1]4
21525215

Il
1
1
'

'
.
’
’
.

N

< International Community Effort

* We believe this needs to be an international
collaboration for various reasons including:

The scale of investment

The need for international input on
requirements

US, Europeans, Asians, and others are working
on their own software that should be part of a
larger vision for HPC.

No global evaluation of key missing components

Hardware features are uncoordinated with
software development

N
< Summary

* Major Challenges are ahead for extreme
computing
= Parallelism O(10%)

e Programming issues

= Hybrid
e Peak and HPL may be very misleading
 No where near close to peak for most apps

= Fault Tolerance
» Today Sequoia BG/Q node failure rate is 1.25 failures/day

= Power
e 50 Gflops/w (today at 2 Gflops/w)

* We will need completely new approaches and
technologies to reach the Exascale level

ICL

Collaborators / Software / Support

. PLASMA e el FUJITSU
http://icl.cs.utk.edu/plasma/ RVIDIA. nag@ AMDZ
¢
- MAGMA &\ The MathWorks

http://icl.cs.utk.edu/magmal/

'_; U.S. DEPARTMENT OF
A'__‘: ‘_~.-'J ,

. Quark (RT for Shared Memory) @f JENERGY

http://icl.cs.utk.edu/quark/

<

. Collaborating partners
University of Tennessee, Knoxville

. PaRSEC(Parallel Runtime Scheduling University of Galifornia, Berkeley
University of Colorado, Denver
and Execution Control)
. INRIA, France
http://icl.cs.utk.edu/parsec/ KAUST, Saudi Arabia

95

IcLor-

16409

100000000

10000000

1000000

0 100000
E
@©

; 10000

1000

100

10

Power for Systems

[ERY

f - '

iPad 2 Your Brain MacBook Car #500
Pro Computer

1 Titan
Computer

747

{‘ »

&
icLor- e
A New Generation of DLA Software
Software/Algorithms follow hardware evolution in time
LINPACK (70Q’s) Rely on
(Vector operations) - Level-1 BLAS
operations
LAPACK (80’s) Rely on
(Blocking, cache - Level-3 BLAS
friendly) operations
ScaLAPACK (90’s) Rely on
(Distributed Memory) - PBLAS Mess Passing
PLASMA Rely on
New Algorithms - a DAG/scheduler

(many-core friendly) - block data layout

- some extra kernels

MAGMA
Hybrid Algorithms
(heterogeneity friendly)

aaaaaaaaaaaa

“ Performance of Level 2 and Level 3 BLAS

%2 — 8 cores Intel Xeon E5-2670 (Sandy Bridge), 2.6 GHz.
24 MB shared L3 cache, and each core has a private 256 KB L2 and 64 KB L1.
Theoretical peak for this architecture in double precision is 20.8 Gflop/s per core (333 Gflops total).
8 flop/cycle*2.6 cycle/sec*16 cores = 332.8 Gflop/s
Compiled with gcc 4.4.6 and using MKL_composer_xe_2013.3.163

300

250
. | 200
g ~@-Level 3 BLAS GEMM
o ~¢=Level 2 BLAS GEMV

100

. e |

0 = I I I I I I I I I 1

1K 2K 4K 6K 8K 10K 12K 14K 16K 18K 20K

Matrix size

e

< Eigenproblem Solvers in MAGMA

Quantum mechanics (Schrodinger equation)
= Quantum chemistry |
» Principal component analysis (in data mining) o) X XX
= Vibration analysis (of mechanical structures)
= Image processing, compression, face recognit
= Eigenvalues of graph, e.g., in Google’s page r

¢ Ax=AX Y

* Need to solve it fast

Current MAGMA results:

MAGMA with 1 GPU can be 12x faster vs vendor libraries on state-
of-art multicore systems

T. Dong, J. Dongarra, S. Tomoy, |. Yamazaki, T. Schulthess, and R. Solca, Symmetric dense matrix-vector multiplication on multiple GPUs
and its application to symmetric dense and sparse eigenvalue problems, ICL Technical report, 03/2012.

J. Dongarra, A. Haidar, T. Schulthess, R. Solca, and S. Tomov, A novel hybrid CPU- GPU generalized eigensolver for electronic structure
calculations based on fine grained memory aware tasks, ICL Technical report, 03/2012.

«- The Standard Tridiagonal Reduction xXSYTRD

% LAPACK xSYTRD:

A22

1. Apply left-right transformations Q A Q* to the panel A,
2. Update the remainina submatrix A..

Tw TS O Tw TS 0 Tw TS O
o1 Ax AL | = o1 Ax AL | = Tor T Th

0 Az Ass

0 Az Ass 0 Tos Ass

where Aszz = A33 — YWT — wyT

0 40 60 80 100 120
nz=14188
step k:
°

0

20

80

0 50 100
nz=1298

Q A Q* then update = step k+l
For the symmetric eigenvalue problem:

First stage takes:

* 90% of the time if only eigenvalues

» 50% of the time if eigenvalues and eigenvectors

0

«- The Standard Tridiagonal Reduction xXSYTRD

.3

1. Phase 1 requires :
© 4 panel vector multiplications,
o 1 symmetric matrix vector multiplication with A,
o Cost 2(n-k)?b flops.
2. Phase 2 requires:
o Symmetric update of A,; using SYRK,
o Cost 2(n-k)?b flops.

* Too many Level 2 BLAS ops,
* Relies on panel factorization,
* Total cost 4n3/3

* =>Bulk sync phases,

* =»Memory bound algorithm.

¢ Toward fast Elgensolver

1~

480
440
400
360
320

I I I I

ﬂ—e—DSYTRD MKL |

T

T

T

T

T

© © ©
\ \ \

flops formula: n3/3*time

1 Higher is faster

2k3k4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k

Matrix size

¥ Characteristics

Too many Blas-2 op,

Relies on panel factorization,
=>Bulk sync phases,
=>Memory bound algorithm.

A. Haidar, S. Tomoy, J. Dongarra, T. Schulthess, and R. Solca,
CPU-GPU generalized eigensolver for electronic structure calculations based on
fine grained memory aware tasks, ICL Technical report, 03/2012.

26k 28k 30k

A novel hybrid

Keeneland system, using one node
3 NVIDIA GPUs (M2090@ 1.1 GHz, 5.4 GB)
2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

-\

¢ Toward fast Elgensolver

1~

480

= 440

400
360
320
80
40
200
160
120

80

40

2
2

Gflop/s

I I

R DSYTRD 3GPUs
¢ DSYTRD_2GPUs
A DSYTRD_1GPU
—e— DSYTRD_MKL

T

T

T

T

T

T

T

g RTTIRIRREY g g o o
g @
““““ o TR IREr
\\\\\ o . oooooo
Lge?
B AA A A A A A AA
AoohooA
e——o—+¢ e e—o6—6—o

‘ | | | | | | |

flops formula: n3/3*time

1 Higher is faster

2k 3k4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k

Matrix size

¥ Characteristics

Blas-2 GEMV moved to the GPU,

Accelerate the algorithm by doing all BLAS-3 on GPU,

=>Bulk sync phases,
=>Memory bound algorithm.

A. Haidar, S. Tomoy, J. Dongarra, T. Schulthess, and R. Solca, A novel hybrid
CPU-GPU generalized eigensolver for electronic structure calculations based on
fine grained memory aware tasks, ICL Technical report, 03/2012.

Keeneland system, using one node
3 NVIDIA GPUs (M2090@ 1.1 GHz, 5.4 GB)
2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

-\

< Symmetric Eigenvalue Problem

ICLOr"

* Standard reduction algorithm is very slow on multicore.

Better formulation:
* Stepl: Reduce the dense matrix to band.

* Matrix-matrix operations, high degree of parallelism
* Step2: Bulge Chasing on the band matrix

* by group and cache aware

nz = 3600

¢ Toward fast Elgensolver

1~1

flops formula: n3/3*time

1 Higher is faster

480 +DSYTRD 25tages 3GPUs
40l —o— DSYTRD_2stages_2GPUs
—&— DSYTRD_2stages_1GPU
400 - o DSYTRD_3GPUs
3601 ¢ DSYTRD_2GPUs
A DSYTRD_1GPU
3201 —e—DSYTRD_MKL
¢\g_ 280+
2 240
O
200
160
1200 4 g
80 g6
ao- &g .
Q ——6——6—6—6—6—=0 e e——o—o6—o
| | | | | | | | | | | | | |
2k 3k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k

Matrix size

¥ Characteristics

Stage 1: BLAS-3, increasing computational intensity,

Stage 2: BLAS-1.5, new cache friendly kernel,

4X/12X faster than standard approach,

Bottelneck: if all Eigenvectors are required, it has 1 back
transformation extra cost.

A.

Haidar, S. Tomoyv, J. Dongarra, T. Schulthess, and R. Solca, A novel hybrid

CPU-GPU generalized eigensolver for electronic structure calculations based on
fine grained memory aware tasks, ICL Technical report, 03/2012.

Keeneland system, using one node
3 NVIDIA GPUs (M2090@ 1.1 GHz, 5.4 GB)
2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

